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Abstract

We present an approach to learning the kinematic model of a robotic manip-

ulator arm from scratch using self-observation via a single monocular camera.

We introduce a flexible model based on Bayesian networks that allows a robot

to simultaneously identify its kinematic structure and to learn the geomet-

rical relationships between its body parts as a function of the joint angles.

Further, we show how the robot can monitor the prediction quality of its

internal kinematic model and how to adapt it when its body changes—for

example due to failure, repair, or material fatigue. In experiments carried

out both on real and simulated robotic manipulators, we verified the validity

of our approach for real-world problems such as end-effector pose prediction

and end-effector pose control.
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1. Introduction

Kinematic models are widely used in robotics, especially in the context

of robotic manipulation (Craig, 1989; Choset et al., 2005). Such models are

typically derived in an analytic way (Rosales and Gan, 2004), which relies

heavily on prior knowledge about the geometry of the robot. When a model

is then used on a real robotic manipulator, its geometrical parameters have

to be calibrated carefully. In practice, this is done by the robot manufacturer

using a highly accurate calibration chamber.

As robotic systems become more complex and versatile, especially when

they are delivered in a completely reconfigurable way, there is a growing

demand for techniques allowing a robot to automatically learn kinematic

models with no or only minimal human intervention and without the need

for costly calibration equipment. Clearly, such a capability would not only

facilitate the deployment and calibration of new robotic systems but also

allow for autonomous re-adaptation when the kinematic model changes, e.g.,

due to deformations of robot parts or due to material fatigue. Additionally,

components of the robot might get exchanged or replaced by newer parts

such that the system model no longer complies with the originally engineered

one. Finally, to make intelligent use of tools, a robot would need to learn the

kinematic properties of unknown tools to use them appropriately (Nabeshima

et al., 2006).

In this article, we investigate how to equip robots with the ability to

learn their kinematic models from scratch and how to adapt them over time

using exploratory actions and self-perception. Figure 7 depicts the robotic

manipulation system used to develop and test our approach and Fig. 7 shows
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a visualization of its simulated counter-part. We propose to learn a Bayesian

network for the kinematic structure of the robot including the forward and

inverse models relating action commands and body pose. In contrast to

prior work in this area, we jointly address (a) the combinatorial problem of

assigning action signals and percepts to body parts and (b) the calibration

problem for all the individual kinematic transformations. Figure 3 gives an

overview of the proposed approach. We start with a fully connected network

containing all perceivable body parts and the available action signals, perform

random “motor babbling” and iteratively reduce the network complexity by

analyzing the perceived body motion. At the same time, we learn Gaussian

process regression models for all individual dependencies in the network,

which can later be used to predict the body pose when no perception is

available or to allow for gradient-based posture control.

Our approach addresses all of the following practical problems that fre-

quently arise in robotic manipulation tasks in a single Bayesian framework:

• Pose prediction: Given the current joint configuration (i.e., the joint

angles), compute the pose of the end-effector.

• Pose control: Conversely, given a target pose (a 6D configuration of

the end-effector), compute the required joint angles that lead to that

position.

• Model selection: Given a history of observed configuration–pose

pairs, infer the structure of the kinematic function. In particular, this

includes discovering the (in-)dependencies between the individual body

parts and the joint signals.
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• Model learning: After the kinematic structure of the robot has been

identified, the geometrical relationships between the body parts of the

robot can be learned from the history of observed configuration–pose

pairs. If parametrized models are used, this corresponds to parameter

optimization given the observed data.

• Model testing: Given both a pose prediction and a pose observation,

the robot estimates the quality of its internal model.

• Failure detection and model adaptation: When the kinematics

of the robot change, e.g., when a joint gets blocked or is deformed,

the robot detects such a change by model testing. Our approach can

localize the mismatch within the kinematic function and trigger re-

learning only for the affected parts of the kinematic function.

The article is structured as follows. We start with a brief introduction of kine-

matic and inverse kinematic functions in robotics in Section 2. We will then

introduce our Bayesian framework for representing robotic body schemas

in Section 3, discuss failure awareness and life-long adaptation in Section 4,

and present experimental results obtained with real and simulated manip-

ulator arms in Section 5, which demonstrate that our approach is able to

quickly learn compact and accurate models and to robustly deal with noisy

observations. We finish the article with a discussion of related work.

2. The Kinematic Function and the Body Schema

The kinematic model describes the relationship between the configuration

of the robot, i.e., the joint angles, and the body posture, i.e., the positions
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of the body parts in space. Figure 4 shows an example of a simple 2-DOF

robotic manipulator. The robot consists of two rotary joints a1 and a2,

and five body parts X1, . . . ,X5. The first two body parts are connected

rigidly. This means that the geometric transformation ∆1→2 from the trunk

X1 to the shoulder X2 is independent of the positions of the joints. The

shoulder X2 and the upper arm X3 are connected by the shoulder joint a1,

and thus their geometric transformation ∆2→3(a1) depends on the joint angle

of a1. The same holds for the following parts, as the joint angle of the elbow

joint a2 has direct influence on the geometrical transformation ∆3→4(a2)

between the upper arm X3 and the lower arm X4. The gripper X5 is attached

rigidly to the lower arm X4, such that ∆4→5 is a fixed transformation. The

kinematic function of this manipulator is defined by the concatenation of

these individual transforms, i.e.,

f(a1, a2) := ∆1→2 ◦∆2→3(a1) ◦∆3→4(a2) ◦∆4→5 . (1)

The kinematic function f(a1, a2) describes the full geometrical transfor-

mation from the coordinate frame of the trunk to the coordinate frame of

the gripper. In engineering, the kinematic function of a robotic manipulator

is often constructed of the individual transformations by the specification

of the Denavit-Hartenberg (DH) parameters (Sciavicco and Siciliano, 2000).

For many robotic applications, it is necessary to compute the required joint

angles a1, a2 given a target position in the workspace, requiring the inverse

kinematic function f−1. Note that as the algebraic inversion of a kinematic

function f is only possible for simple manipulators, a solution to the inverse

kinematic problem is in practice often computed using an iterative numeri-

cal method, such as pseudo-inverse inverse kinematics (IK) or damped-least
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squares IK (Buss and su Kim, 2005).

Probabilistic graphical models, like Bayesian networks, are an appealing

tool to represent the dependencies between random variables in an intuitive

way (Pearl, 1988; Jensen, 2001). A Bayesian network is a directed, acyclic

graph consisting of nodes and edges. The nodes in the network correspond

to the observed or latent random variables, and the edges (or lack of edges)

between nodes stand for the conditional dependencies (or independencies,

respectively) between two nodes. Note how the kinematic function of Eq. 1

has been translated into the Bayesian network depicted in Fig. 7: the poses

of the body parts X1, . . . ,X5 and the actions a1, a2 appear as nodes in the

network, and the kinematic structure is encoded as the topology of the net-

work. Consider for example the pose of body part X2, that has only a single

incoming edge originating from pose X1, meaning that the pose of X2 is fully

defined after X1 has been observed. In contrast, the pose of X3 has incoming

edges both from X2 and a1, expressing its probabilistic dependency of both

of its so-called parents. Bayesian networks can be used to infer the proba-

bility distributions of particular nodes in a variety of ways (Sudderth et al.,

2003). In particular, it is possible with Bayesian networks to answer queries

similar to those listed at the end of Section 1, for example predicting the

pose of the end-effector (given a1, . . . , am, infer Xn) or controlling the pose

of the end-effector (given Xn, infer a1, . . . , am).

3. A Bayesian Framework for Kinematic Chains

We define a robotic body schema as the joint probability distribution of

the available action signals 〈a1, . . . , am〉, the self-observations 〈Y1, . . . ,Yn〉,
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and the true poses of the body parts 〈X1, . . . ,Xn〉. In our concrete scenario,

in which we consider the body schema of a robotic manipulator arm in con-

junction with a stationary, monocular camera, the action signals ai ∈ R are

real-valued variables corresponding to the latest joint angle request. Whereas

the Xi ∈ R
6 encode the 6-dimensional poses (3D Cartesian position and

3D orientation) of the body parts w.r.t. a reference coordinate frame, the

Yi ∈ R
6 are observations of the body parts—generally noisy and poten-

tially missing. Throughout this article, we use capital, bold letters to denote

the pose variables to highlight that these also uniquely define homogeneous

transformation matrices, which can be concatenated and inverted.

Note that our approach does not require proprioception telling the robot

how well joint i has approached the requested target angle ai. At first sight,

it seems that with proprioception one could learn the kinematic function

passively from visual and proprioceptive observations only. However, one

would then lack the mapping from motor commands to proprioception, such

that the learned model would not suffice for manipulator control. One would

either need to assume that motors and proprioceptive sensors are calibrated

precisely, or one would need to additionally learn the motor-proprioception

mapping for each joint. Therefore, we propose to learn the mapping from

motor commands to body pose observations directly using active exploration.

In this way, our approach closes the action-perception-loop, as visualized

in Fig. 3, and it obviates the need for additional calibration of the motor

encoders.

Formally, we seek to learn the probability distribution

p(X1, . . . ,Xn,Y1, . . . ,Yn | a1, . . . , am) , (2)
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which in this form is intractable for all but the simplest scenarios. It is

therefore typically assumed that each observation variable Yi is independent

from all other variables given the true configuration Xi of the corresponding

body part and that they can thus be fully characterized by an observation

model p(Yi | Xi). Furthermore, if the kinematic structure of the robot

was known, a large number of pair-wise independencies between body parts

and action signals could be assumed, which in turn would lead to the much

simpler, factorized model

p(X1, . . . ,Xn | a1, . . . , am) =
∏

i

p(Xi | parents(Xi)) . (3)

Here, parents(Xi) comprises all body parts and action variables that di-

rectly influence Xi. Note, that the actions are given and, thus, do not de-

pend on other variables in this model. We now make the factorized struc-

ture of the problem explicit by introducing (hidden) transformation variables

∆i→j := X−1
i Xj for all pairs 〈Xi,Xj〉 of body parts. We represent the 6D

pose vectors X as their equivalent homogeneous transformation matrices,

which means that ∆i→j reflects the (deterministic) relative transformation

between Xi and Xj. Note that various parameterizations of such transforma-

tion matrices are possible (e.g., by means of the Euler angles, quaternions,

or over-parametrized as the full 12D matrices) and that we thus assume a

d-dimensional parametrization of ∆i→j.

Denoting with Zi→j := Y−1
i Yj the transformation relating the observa-

tions Yi and Yj that correspond to Xi and Xj, we define as a local model

the subgraph of our network that defines the relationship between any two

body parts Xi and Xj and their dependent variables, if all other body parts

are ignored. Figure 7 shows a prototypical local model. Here, we denote
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with Ai→j the set of action variables that have a direct influence on ∆i→j.

Any set of (n− 1) local models which forms a spanning tree over all n body

parts defines a model for the whole kinematic structure.

In the following, we explain (a) how to learn local models from data

and (b) how to find the best spanning tree built from these local models

that explains the whole robot. We consider the single best solution only

and do not perform model averaging over possible alternative structures.

Note that in theory, it would be straight-forward to keep multiple structure

hypotheses and to average over them for prediction using Bayes’ rule. Control

under structure uncertainty, however, is a slightly more difficult problem.

One would have to consider all possible structures and assess the individual

risks and gains for alternative actions. Then, the one action sequence would

be selected that maximizes the overall gain while keeping all possible risks

low (Stachniss et al., 2005). In practice, we found that considering the most-

likely structure only is sufficient for most of the relevant tasks. Our approach

is conservative in this respect since it requires a certain minimal accuracy

from all parts of the body schema before the model is considered complete.

3.1. Local Models

The local kinematic models are the central concept in our body schema

framework. A local model M (see Fig. 7) describes the geometric relation-

ship between two body parts i and j given a set of action signals Ai→j. We

propose to learn this relationship from data samples acquired while perform-

ing random actions and observing their effects. As the learning framework

for solving this supervised regression problem, we apply Gaussian processes

for regression (Rasmussen and Williams, 2006). On the real robotic plat-
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form used in our experiments, the action ai correspond to the target angle

requested from joint i. The observations Yi of part locations Xi are ob-

tained by tracking visual markers in 6D space (including their 3D pose and

3D orientation (Fiala, 2004), see Fig. 7). Note that the Yi’s are inherently

noisy and that missing observations are common—for example in the case of

(self-)occlusion.

Formally, the task is to learn the local transformations ∆i→j, each linking

two body parts Xi and Xj. Considering Fig. 7, a straight-forward approach

would be to infer the true poses Xi and Xj from the noisy observations

Yi and Yj, for instance assuming Gaussian white noise on the observations,

Yi ∼ N (Xi, σ
2
sensor ·Id). With Id we denote the d-dimensional identity matrix

and remind that d denotes the chosen dimensionality of the parametrization

of transformation matrices. In other terms, one would be following the full

Bayesian pathway Yi ← Xi →∆i→j → Xj → Yj to reason about ∆i→j.

However, since the absolute positions Xi are irrelevant for describing

the relative transformations, we take a slightly different approach by con-

centrating on the transformations Zi→j between observations Yi and Yj.

We model Zi→j ∼ N (∆i→j, σ
2
sensor-rel · Id), and thus follow the shorter path

{Yi,Yj} ← Zi→j ← ∆i→j, which does not include the Xi explicitly. The

problem of learning a single local model now has the form of the noisy re-

gression problem, that is, learning the function

fM : R
|A

i→j
| → R

d,

Ai→j 7→ ∆i→j (4)

from noisy observations Zi→j.

10



For simplicity, we consider over-parametrized transformation matrices in

the following with d = 12 independent components and learn the functional

mapping for each component separately. Due to this simplification, we cannot

guarantee that all predictions correspond to valid, homogeneous transforma-

tion matrices. In practice, however, they lie close to valid transformations,

such that a normalization step (orthonormalizing the rotation part using

singular value decomposition) resolves the problem. In the future, we might

consider more efficient parameterizations that come closer to the actual 6-

DOF of the transformations.

For solving the regression problem as stated in Eq. 4, we place individual

Gaussian process priors (Rasmussen and Williams, 2006) on the 12 variables

of the transformation functions fM for all local models M and choose the

squared exponential covariance function to parametrize the process. Fig-

ures 8 and 9 shows the x, y, and z components of two different local models

learned from real data using the Gaussian process (GP) model. In the sit-

uation shown in Fig. 8, the action variable (x-axis) physically corresponds

to the transformation being measured (y-axis). Thus, the data set is self-

consistent and accurate functions with low noise levels can be learned. The

higher noise level for the z-component is due to larger measurement error in

this direction (i.e. the camera’s line of vision). In the situation depicted in

Fig. 9, a local model has been learned for variables that do not have a direct

physical relationship. As a result, the model shows high noise levels and it

does not explain the data well. Such a local model is likely to be discarded

during the search for the full body model, which is described in the following.
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3.2. Learning a Factorized Full Body Model

We seek to find a factorized model for the whole kinematic structure

(see Eq. 3) that explains the observed data well and that is not overly

complex—such that it can be learned and evaluated online. To limit com-

plexity, we first discard all local models that are overly inconsistent with the

observed data. We define a local model M to be valid given a set of obser-

vations D, if and only if its prediction error is below some threshold θ, i.e.,

ǫpred(D) < θ that we will denote with the Boolean predicate validM(D). Our

experiments revealed that a good value for θ is 3σ, where σ is the standard

deviation of the sensor model. The prediction error ǫpred(D|M) is defined as

ǫpred(D | M) :=
1

|D|

∑

(Zi→j ,Ai→j)∈D

ǫpred(Zi→j | Ai→j,M) (5)

with

ǫpred(Zi→j | Ai→j,M) :=
1

d

√
∑

z∈Zi→j

(z − µ∗
z)

2 . (6)

Here, µ∗
z is the mean prediction of component z of transformation Zi→j.

Denoting with C(M) ∈ N the dimensionality of model M, that is, the

number |A
i→j
| of action signals that the model depends on, we define a

model quality measure q(D|M),

log q(D | M) = log[1/ǫpred(D | M)]
︸ ︷︷ ︸

accuracy

−C(M) log 1/θ
︸ ︷︷ ︸

complexity

(7)

which is proportional to both the model accuracy and to a penalty term for

model complexity. Note that quality measures such as the Bayesian informa-

tion criterion (BIC) are not directly applicable here since Gaussian process
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regression is a nonparametric method and, thus, there is no obvious number

of parameters for representing the data sets. Note that the marginal data

likelihood p(D|M), which is used to learn the parameters of the covariance

function, might serve as an alternative model quality measure. However,

since q(D|M) includes the model dimensionality explicitly—which makes it

easy to order the search for local models by this criterion—we have used this

measure in our experiments.

3.2.1. Finding the Network Topology

If no prior knowledge about the body structure of the robot exists, we

initialize a fully connected network model containing a total of
∑m

k=0

(
n

2

)(
m

k

)

local models (linking m actions to n transformations). Given a set of self

observations, the robot can first eliminate those local models that are highly

inconsistent with the data by evaluating validM(D) as described above. The

remaining set of valid models is typically still large (e.g., see Fig. 10). Cer-

tain ambiguities will, for instance, remain even after infinitely many training

samples. If, for example, pM1
(Z1→2 | a1) has been determined to be a valid

local model, then pM2
(Z1→2 | a1, a2) will also be. Although these alterna-

tive models might not be distinguishable regarding prediction accuracy for

Z1→2, they differ significantly in their complexity and therefore in their model

quality q(D | M).

To resolve such locally ambiguous situations and to also find the best

topology on a global level, we seek to select the minimal subset M ⊂ Mvalid

from the superset of all valid local models Mvalid = {M1, . . .} that covers

all body part variables and simultaneously maximizes the overall model fit

q(D | M) :=
∏

M∈M
q(D | M). M can be found efficiently by computing
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the minimal spanning tree of Mvalid taking the model quality measure of the

individual local models as the cost function. For our purposes, the spanning

tree needs to cover all body parts but not necessarily all action variables,

since some of them might not have an influence on the robot.

To connect all n body poses in the Bayesian network, exactly |M| = (n−1)

local models need to be selected. This yields
(
|Mvalid|
|M|

)
possible network struc-

tures to be considered. In the typical case, where the robot is composed of

1-DOF joints (arbitrarily connected), this number reduces to the order of

O(n3). Regarding the scalability to higher degrees of freedom and longer

kinematic chains, the growth of the search space is of less practical impor-

tance than other factors like the observability of local transformations (from

a given camera view point). In practice, straight-forward search heuristics al-

low us to strongly focus the search on the relevant parts of the structure space,

further reducing this number. In our experiments, for instance, we searched

by processing the lower dimensional models first. Recall that the quality

measure q(D | M) for a local model is composed of the (data-dependent)

prediction accuracy and a (data-independent) complexity penalty. If we con-

sider two valid local models, i.e., with ǫpred(D | M1|2) < θ, then by the

definition of q(D | M), the quality of a model with lower complexity is al-

ways higher compared to a local model with higher complexity for any D,

i.e.,

C(M1) < C(M2)⇐⇒ ∀D : q(D | M1) > q(D | M2) . (8)

This is due to the fact that C(M) contains the error threshold θ and that

this is also the upper bound of all prediction errors ǫpred (see Eq. 6)—all

models above this threshold are invalid and thus discarded. Due to Eq. 8, it

14



is sufficient to evaluate only the first k complexity layers of local models in

Mvalid until a minimal spanning tree is found for the first time. This spanning

tree then corresponds to the global maximum of overall model quality.

3.3. Prediction and Control

Having discussed the learning of local models and the selection of the net-

work structure, we now show how the resulting model can be used to predict

the configuration of the robot for a given action signal (forward modeling)

and how to select actions to achieve a given configuration (inverse modeling).

The kinematic forward model can be constructed directly from the local

models contained in M, since these form a tree over all body part variables

Xi. We can write

p(X1, . . . ,Xn | a1, . . . , am) =
∏

i

p(Xi | parents(Xi))

= p(Xroot)
∏

Mi→j∈M
pMi→j

(∆i→j | Ai→j)

= p(Xroot)
∏

Mi→j∈M
pMi→j

(X−1
i Xj | Ai→j) , (9)

where Xroot is the position of the robot trunk, which serves as the ref-

erence frame for all other body parts. We denoted with Mi→j the local

model of M which describes the transformation between Xi and Xj. From

p(X1, . . . ,Xn|a1, . . . , am) in the factorized form, we can now approximate the

maximum likelihood (ML) estimate of the resulting body posture given an

action signal by concatenating the geometric transformations of the individ-

ual geometric transformations. We may refer the interested reader to (Ware

and Lad, 2003) how products of Gaussians can be approximated by a single

Gaussian.

15



Although the inverse kinematic model can be derived by applying Bayes’

rule in principle,

p(a1, . . . , am | X1, . . . ,Xn)

=
p(a1, . . . , am)

p(X1, . . . ,Xn)
p(X1, . . . ,Xn | a1, . . . , am),

it is difficult in practice to determine the maximum likelihood (ML) solution

for the action signal a1, . . . , am. This is due to the fact that the goal configu-

ration is typically not fully specified for all body parts, but rather for the root

part and the end-effector only. Thus, the Bayesian network is constrained at

both “ends” only, which results in a high-dimensional optimization problem.

For this reason, we resort to a well-known iterative approach (termed

differential kinematics in the literature) which applies small changes to the

current action signal such that the body posture X1, . . . ,Xn approaches the

target configuration. Since all individual functions fMi
are continuous, and

so is the ML posture estimate f of the forward kinematic model, we can

compute the Jacobian of the forward model as

Jf (a) =

[
∂f(a)

∂a1

, . . . ,
∂f(a)

∂am

]T

.

Given Jf (a), it is straight-forward to implement a gradient descent-based al-

gorithm that continuously minimizes the distance function and, thus, controls

the manipulator towards the target configuration. While such a “greedy”

controller may get trapped in local minima of the distance function and fails

to plan around obstacles in general, it nevertheless solves many important

control tasks and it builds the basis for higher-level path-planning algorithms,

such as probabilistic road-maps.
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4. Failure Awareness and Life-Long Adaptation

So far, we have assumed that the kinematics of the robot remain un-

changed during its whole life-time. It is clear, however, that in real-world

applications, the robot will change in the course of time. This requires that

the robot revises parts of its internal model over time, allowing it to dis-

criminate between earlier and more recent observations. We would like the

robot to detect changes to its body by testing the validity of its local models

at different points in time and at different temporal scales. It might even

be useful for the robot to maintain multiple body schemas at different time

scales. Consider, for example, a robot that uses an accurate pre-programmed

model over a long period of time, but which is also able to create and use

a new models that takes over as soon as the body structure of the robot

changes (which could be as little as the displacement of one visual marker).

Such a situation is depicted in Fig. 11. In this experiment, we changed the

end-effector body part without notifying the system. The task then was,

to automatically detect the change and to learn a replacement for the mis-

matching local model.

For dealing with model changes over time, we consider temporal local

models MT that describe the geometric relationship pT
M(Zi→j | Ai→j, T )

between two observed body parts Yi and Yj given a subset of the action

signal Ai→j ⊂ {a1, . . . , an} and a particular time interval T . However, the

size of the learning problem now also grows exponentially in time yielding the

immense upper bound of
∑m

k=0

(
n

2

)(
m

k

)
2|T | local models to be considered. As

it would be practically infeasible to evaluate all of these local models even for

small periods of time, three additional assumptions can be made such that
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an efficient algorithm for online application can be implemented:

1. Changes to the kinematic structure and/or body geometry are rela-

tively rare events.

2. Changes to the robot’s body happen incrementally.

3. Whatever local models were useful in the past, it is likely that similar—

or even the same—local models will be useful in the future.

Due to Assumption 1, we do not have to re-learn the local models con-

tinuously and re-optimize the network, but rather it is sufficient to monitor

the prediction accuracies of the models until one of them is not evaluated as

being valid any more. In this case, Assumption 2 states that the network

cannot change completely at a given time step, but that we can recover the

new structure by exchanging non-valid local models by re-learned ones indi-

vidually. Furthermore, according to Assumption 3, it is reasonable to begin

the search for new models with those that are similar to previously useful

models, i.e., to keep a history of successful local models and to start searching

within this history before learning new models from scratch.

These rules were incorporated into an integrated system, that is able to

learn a body schema from scratch and to exchange local models at a later

stage, whenever a misfit is detected. For rating and ordering alternative local

models, we consider the structural proximity C(M2 | M1) of two local models

which we define as the ratio of shared nodes in the Bayesian network. This

way, models that depend on a similar set of variables are given preference

in the search. We now present an experimental evaluation of the integrated

system in simulation and on two real robotic manipulators.
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5. Experimental Results

We tested our approach in a series of experiments both on a real robot

and in simulation. The goal of our experiments was to verify that

1. the robot is able to learn its kinematic structure and individual trans-

formation functions,

2. subsequent changes to the robot’s body are detected confidently (blocked

joints / deformations),

3. the body schema is updated automatically without human intervention,

4. and the resulting model allows for accurate prediction and control.

The two real robots used to carry out the experiments were equipped with

a 2-DOF and with a 6-DOF manipulator, respectively, composed of Schunk

PowerCube modules (see Fig. 7). As the ground-truth kinematic model to

compare against, we consider a carefully hand-tuned model and the joint

encoder measurements—which are not used for learning and prediction in

our approach. Visual perception was implemented using a Sony DFW-SX900

FireWire camera at a resolution of 1280x960 pixels. Seven black-and-white

markers were attached to the joints of the robot and the ARToolkit vision

module (Fiala, 2004) was used to continuously estimate their 6D poses. The

standard deviation of the camera noise was measured to σmarkers = 44 mm in

3D space, which is acceptable considering that the camera was located two

meters apart from the robot. The prediction errors and errorbars reported

in the following were estimated on an independent test set of |Dtesting| = 15

data samples.
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Evaluation of Model Accuracy

To quantitatively evaluate the accuracy of the kinematic models learned

from scratch as well as the convergence behavior of our learning approach,

we generated random action sequences and analyzed the intermediate models

using the 2-DOF robot of which the kinematic model is perfectly known.

Figure 15 gives the absolute errors of prediction and control after certain

numbers of observations have been processed. For a reference, we also give

the average observation noise, i.e. the absolute localization errors of the

visual markers. As can be seen from the diagram, the body schema converges

robustly within the first 10 observations. After about 15 training samples,

the accuracy of the predicted body part positions becomes even higher than

the accuracy of the direct observations. The latter is a remarkable result as it

means that, although all local models are learned from noisy observations, the

system is able to “blindly” estimate its configuration more accurately than

immediate perception. The figure also gives the accuracy of the gradient-

based control algorithm. Here, we used an additional marker for defining

a target location for the end effector. We learned the full body schema

model from scratch as in the previous experiment and used the gradient-based

control algorithm to bring the end effector to the desired target location.

The average positioning error is in the order of the perception noise (approx.

50 mm, see Fig. 15), which is slightly higher than the prediction error alone.

Scenario 1: Blocked Joint

In a second experiment we used the 6-DOF robot (see Fig. 7) to evaluated

how well the proposed system can detect a stuck joint and repair its model

accordingly. To this aim, we initialized the body schema with an accurate,
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manually calibrated model. Upon detection of a model mismatch, new lo-

cal models were trained from |Dtraining| = 30 consecutive training samples

recorded after the model was instantiated. In order for a local model to be

valid, its translational and rotational error on the test set was required to be

below a threshold of θtrans = 3σtrans = 150 mm and θrot = 3σrot = 45◦, with

σtrans and σrot the standard deviations of the translational and rotational ob-

servation noise, respectively. New local models were only sampled when no

valid spanning tree could be constructed for |Dtesting| consecutive time steps,

as this is the time it takes to replace most if not all data samples of the test

set.

We generated a large sequence of random motor commands 〈a1, . . . , am〉.

Before accepting a pose, we checked that the configuration would not cause

any (self-)collisions and that the markers of interest would potentially be

visible on the camera image. This sequence was sent to the robot and after

each motion command, the observed marker positions 〈Y1, . . . ,Yn〉 were

recorded. We allowed for arbitrary motion patterns (just constrained by the

geometry of the manipulator) and thus do not assume full visibility of the

markers. In the rare case of an anticipated or actual (self-)collision during

execution, the robot stopped and the sample was rejected. Analysis of the

recorded data revealed that, on average, the individual markers were visible

only in 86.8% of the time with the initial body layout. In a second run,

we blocked the end-effector joint a4, so that it could not move, and again

recorded a log-file. An automated test procedure was then used to evaluate

the performance and robustness of our approach. For each of 20 recorded

runs, a data sequence was sampled from the log-files, consisting of 4 blocks
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with N = 100 data samples each. The first and the third block were sampled

from the initial body shape, while the second and the fourth block were

sampled from the log-file where the joint got blocked.

Fig. 16 shows the absolute errors of the local models predicting the end-

effector pose. As expected, the prediction error of the engineered local model

increases significantly after the end-effector joint gets blocked at t = 100.

After a few samples, the robot detects a mismatch in its internal model and

starts to learn a new dynamic model (around t = 130), which quickly reaches

the same accuracy as the original, engineered local model. At t = 200, the

joint gets repaired (unblocked). Now the estimated error of the newly learned

local model quickly increases while the estimated error of the engineered local

model decreases rapidly towards its initial accuracy. Later, at t = 300, the

joint gets blocked again in the same position, the accuracy of the previously

learned local model increases significantly, and thus the robot can re-use this

local model instead of having to learn a new one.

The precision of the combined model—i.e. the engineered one fused with

the one learned after having detected the failure—are given in Fig. 17 and

Fig. 18 for 20 re-runs of the experiment. The hand-tuned initial geometrical

model evaluates to an averaged error at the end-effector of approx. 37 mm.

After the joint gets blocked at t = 100, the error in prediction increases

rapidly. After t = 115, a single new local models gets sampled, which already

is enough to bring down the overall error of the combined kinematic model

to approximately 51 mm. Training of the new local model is completed at

around t = 135.

Later, at t = 200, when the joint gets un-blocked, the error estimate of the
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combined kinematic model increases slightly, but returns much faster to its

typical accuracy: Switching back to an already known local model requires

less data samples than learning a new model (see Tab. 1). At t = 300, the

same quick adaption can be observed when the joint gets blocked again.

Scenario 2: Deformed limb

In a third experiment1, we changed the end-effector limb length and orien-

tation and applied the same evaluation procedure as in the previous subsec-

tion. This was accomplished by placing a tool with an attached marker in the

gripper and changing its configuration during the experiment (see Fig. 11ff).

The quantitative results for 20 runs are given in Fig. 20 and Fig. 21. After

the tool gets displaced at t = 100, two local models have to be sampled

on average to repair the kinematic model. The prediction accuracy of the

whole system closely resembles the levels that were obtained in the case of

the blocked joint: On average, we measured an accuracy of 47 mm after re-

covery. In Tab. 1, we summarize the recovery times for this and the previous

experiment. As can be seen from the results, the system adapts to a blocked

joint quicker than to a deformed limb, and recalling a previously successful

model—i.e. the engineered one after ”repair” or the newly learned one af-

ter ”same failure”—is significantly faster than learning from scratch (after

”failure”).

1A demonstration video of this experiment can be found on the Internet at

http://www.informatik.uni-freiburg.de/~sturm
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Controlling a Deformed Robot

Finally, we ran a series of experiments to verify that dynamically main-

tained body schemas can be used for accurate positioning and control. The

experiments were performed on a simulated 4-DOF manipulator. We defined

a trajectory consisting of 30 way-points (in 3D space) that the manipulator

should approach using the inverse kinematics derived from its current body

schema, see Fig. 22 and Fig. 23. When the initial geometric model was used

to follow the trajectory by using the undamaged manipulator, a positioning

accuracy of 7.03mm was measured. When the middle limb was deformed by

45◦, the manipulator with a static body schema was significantly off course,

leading to an average positioning accuracy of 189.35mm. With dynamic

adaptation enabled, the precision settled at 15.24mm. These results are also

summarized in Tab. 2 including the two standard deviations of the errors ob-

tained on 20 runs. The results show that dynamic model adaption enables a

robot to maintain a high positioning accuracy even after substantial changes

to its body.

6. Related Work

The concept of kinematic functions and inverse kinematic functions in

robotics is closely related to the concept of body image and body schema

in cognitive neuroscience (Stamenov, 2005; Gallagher, 2005). Evidence from

studies of both humans and higher primates indicates regions of the higher-

level visual cortex that are specialized for the visual perception of the body

(Peelen and Downing, 2007). Mirror neurons, as found in brain area F5,

map proprioceptive sensations to tactile and visual ones and thereby seem
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to serve as a neurological representation of the body schema (Holmes and

Spence, 2004), suggesting that the body schema serves as a spatio-temporally

integrated image of various modalities, such as auditory and visual percep-

tions and somatic including tactile sensations as well (Sawa et al., 2007).

Neuro-physiological evidence indicates that humans as well as higher pri-

mates are able to learn and adapt their body schema continuously and au-

tonomously (Meltzoff and Moore, 1997). Brain scan studies of monkeys that

have been trained to use tools revealed that the tool itself even gets integrated

into their body schemas over time (Maravita and Iriki, 2004).

The problem of learning kinematics of robots has been investigated heav-

ily in the past. Recently, Kolter and Ng (2007) enabled a quadruped robot

to follow omnidirectional paths using dimensionality reduction techniques.

Their key idea is to use a simulator for identifying a suitable subspace for

policies and then to learn with the real robot only in this low-dimensional

space. A similar direction has been explored by Dearden and Demiris (2005),

who applied dimensionality reduction techniques to unveil the underlying

structure of the body schema. Similar to this work, their approach is for-

mulated as a model selection problem between different Bayesian networks.

Another instance of approaches based on dimensionality reduction is the work

by Grimes et al. (2006) who applied the principal component analysis (PCA)

in conjunction with Gaussian process regression for learning walking gaits on

a humanoid robot.

Yoshikawa et al. (2004a) used Hebbian networks to discover the body

schema from self-occlusion or self-touching sensations. and learned classi-

fiers for body/non-body discrimination from visual data (Yoshikawa et al.,
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2004b) . Other approaches used nearest-neighbor interpolation (Morasso and

Sanguineti, 1995) or neural networks (Natale, 2004), for example for hand-

eye coordination (Gaskett and Cheng, 2003) using self-organizing maps. By

combining the body images of multiple modalities, e.g., both a motor and

a tactile body image, it becomes possible to infer the motor Jacobians even

for invisible hand positions (Sawa et al., 2007). As the required number of

training samples increases exponentially with the degrees of freedom of the

robot, Lopes and Santos-Victor (2005) propose to learn the kinematic func-

tion incrementally, first by moving only the shoulder/elbow joints, and later

for the hand. A similar approach was formulated by de Angulo and Torras

(2002, 2005) for learning the inverse kinematic function in two parts, which

speeds up learning but requires an additional search step during evaluation

of the function. For redundant kinematic chains, no global inverse kinematic

function exists. Therefore, D’Souza et al. (2001) used Locally Weighted

Projection Regression (LWPR) to estimate the inverse kinematic function

locally at the current configuration from observed data. Recently, Ting et al.

(2006) developed a Bayesian parameter identification method for non-linear

dynamic systems, such as a robotic arm or a 7-DOF robotic head.

The approach presented in this article is also related to the problem of

self-calibration which can be understood as a subproblem of body schema

learning. When the kinematic model is given in a parametric form, the

parameters can be estimated efficiently, in certain cases, by optimizing the

parameters directly (Hersch et al., 2008) or by maximizing the likelihood

of the model given the data (Roy and Thrun, 1999). Genetic algorithms

have been used for parameter optimization when no closed form is available
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(Bongard et al., 2006b). To a certain extent, such methods can also be

used to calibrate a robot that is temporarily using a tool (Nabeshima et al.,

2005). In contrast to the work presented here, such approaches require a

parametrized kinematic model of the robot.

To achieve continuous self-modeling, Bongard et al. (2006a) recently de-

scribed a robotic system that continuously learns its own structure from

actuation-sensation relationships. In three alternating phases (modeling,

testing, prediction), their system generates new structure hypotheses using

stochastic optimization, which are validated by generating actions and by

analyzing the following sensory input. In a more general context, structure

learning was studied in arbitrary non-linear systems using similar mecha-

nisms by Bongard and Lipson (2007).

In contrast to all the approaches described above, we propose an algo-

rithm that learns both the structure as well as functional mappings for the

individual building blocks. Furthermore, our model is able to revise its struc-

ture and component models on-the-fly. This paper presents a complete view

on our previous works (Sturm et al., 2008b,a), the first of which introduced

the probabilistic kinematic model as well as the basic algorithm for structure

search. The latter work extended the model towards life-long adaptation and

self-monitoring and gave more experimental results in complex and realistic

scenarios.

7. Conclusion

In this article, we presented a novel approach to body schema learning

and life-long body adaptation for a robotic manipulation system. Our central
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idea is to continuously learn a large set of local kinematic models using

nonparametric regression and to search for the best arrangement of these

models to represent the full system. To the best of our knowledge, this is

the first time that such complex kinematic structures have been learned from

scratch using visual self-observation only.

Our work follows the general idea of learning by explanation. The search

for the kinematic structure (including its dimensionality and connectivity)

as well as the calibration of the local models is guided by how well the set of

observations can be explained by the model.

In experiments carried out with a real robot and in simulation, we demon-

strated that our system is able to deal with missing and noisy observations,

operates in full 3D space, and is able to perform relevant tasks like prediction,

control, and online adaptation after failures.
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Figure 1: Our 6-DOF robotic manipulator arm learns and monitors its own

body schema using an external monocular camera and visual markers.
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Figure 2: A similar, simulated 7-DOF-manipulator consisting of 10 body

parts.
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Sense
6D poses of body parts
using a monocular camera

Act
Set joint angles

Kinematic bootstrapping
and life-long adaptation
of robotic body schema
through self-observation

p (X3|X1, a1, a2) =∫
p (X2, |X1, a1) p (X3, |X2, a2) dX2

X1, . . . , Xn ∈ R
4×4 a1, . . . , am ∈ R

Figure 3: Learning the kinematic function from self-observations. Lower

right: The robot sends action commands to its motors. Lower left: It senses

the new configuration of its body parts using a camera. Top: The robot

learns and continuously updates a probabilistic kinematic model from these

action-effect samples.
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Figure 4: The kinematic function of a robotic manipulator is constructed by

concatenating the individual geometric transformations of each of the joints

and links.
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Figure 5: The kinematic function of the robot depicted in Fig. 4 represented

as a Bayesian network. An edge indicates a probabilistic dependency, while

the absence of an edge indicates probabilistic independency.

38



Figure 6: Example network model linking action signals a1 and a2 to body

part locations X1, X2, and X3 using local models (green circles). The black

edges indicate the current best minimal spanning tree found during the search

for the most compact model.
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Figure 7: Local model for two body parts Xi and Xj as well as their de-

pendent variables. Ai→j denotes the set of independent action variables that

cause a local transformation ∆i→j. Yi and Yj are the observed part loca-

tions, and Zi→j is their relative geometric transformation.
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Figure 8: Example of an accurate local model learned for two body parts

and an action variable. Note the low predictive variance for the x- and y

components as well as the higher noise in the z dimension, which is due to

higher measurement uncertainty in this direction.
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Figure 9: Less accurate model learned for the same body parts as in Fig. 8

but for a different action variable. Such a local model is less likely to be

part of the Bayesian network describing the full kinematic chain of the robot

since, on average, its predictions are less accurate.
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Figure 10: In an early learning phase, the robot knows only little about its

body structure and, thus, all possible local models need to be considered

in parallel (gray edges). Using the subset of valid local models, a minimal

spanning tree can be constructed to form a sparse Bayesian network (dark

black edges). This can subsequently be used as a body schema for prediction

and control.
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Figure 11: After a different tool is placed in the gripper, the model predic-

tions do not fit the current observations anymore.
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Figure 12: Continued experiment from Fig. 11. The current body schema

linking action signals ai and body parts Xj using local models ∆j→k. Here,

a mismatch between the internal model and recent self-observation has been

detected at node ∆6→7.
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Figure 13: Continued experiment from Fig. 12. The robot samples a lo-

cal model as replacement for the mismatching component ∆6→7. The first

newly sampled model (∆gp
6→7) has high uncertainty, because of the missing

dependency on action a6.
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Figure 14: Continued experiment from Fig. 13. The second sampled model

(∆gp′

6→7) is a more suitable replacement for the mismatching component.
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Figure 15: Prediction and control errors for a kinematic model that is learned

from scratch. Already after 7 samples, the average prediction error is lower

than the average localization error of the visual markers.
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Figure 16: At t = 100, a joint gets blocked, which causes the initial local

model pengineered(Z6→7 | a4) to produce substantially larger prediction errors.

At t = 126, the robot samples a new local model plearned(∆6→7) as replace-

ment.
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Figure 17: Evolution of the number of models in time, averaged over 20 runs.

When the joint is blocked at t = 100, the combined kinematic model becomes

invalid. A new model is instantiated and added to the training and test sets.
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Figure 18: The absolute prediction error of the combined kinematic model

p(Z1→7 | a1, . . . , a6) of our 6-DOF manipulator averaged over 20 runs. As

can be seen from the plot, the prediction accuracy recovers quickly after each

of the three external events.
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Figure 19: In this experiment, the limb length and orientation of the end-

effector were changed at t = 100.
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Figure 20: Evolution of the number of models in time for the experiment

described in Fig. 19, averaged over 20 runs. The robot had to sample on

average two local models before the combined kinematic model could be

restored.
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Figure 21: Evaluation of the prediction accuracy of the experiment in Fig. 19,

averaged over 20 runs. The robot is able to recover quickly from the large

prediction errors induced by the limb deformation.
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Table 1: Evaluation of the recovery time required after being exposed to

different types of failures. We give the mean recovery times for 20 runs,

respectively, and the (±) standard deviation spread.

Visibility Failure Recovery time after

rate type failure repair same failure

91.9% Joint blocked 16.50 ± 1.20 0.45 ± 0.86 0.65 ± 1.15

79.0% Limb deformed 20.20 ± 1.96 11.10 ± 0.83 12.10 ± 1.64
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Figure 22: The manipulator robot with a deformed limb has to follow the blue

target trajectory. With a static body model, it suffers from strong derivation

(red trajectory). By using our approach, the body schema is dynamically

adapted, and the trajectory is very well approached (green trajectory).
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Figure 23: Same as Fig. 22, but here from a different perspective.
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Table 2: Evaluation of the inverse kinematics experiment in simulation. By

sampling new local models upon the detection of a failures, the robot is able

to regain high positioning accuracy.

Body shape Model type Control error

initial (unchanged) static 7.03 ± 10.87

deformed static 189.35 ± 28.36

deformed adaptive 15.24 ± 1.86
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